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Evolving network – simulation study
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Abstract. The Watts-Strogatz algorithm of transferring the square lattice to a small world network is
modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the
network is two-step: sequential preferential rewiring of edges controlled by p and updating the information
about changes done. The evolving system self-organizes into stationary states. The topological transition
in the graph structure is noticed with respect to p. Leafy phase – a graph formed by multiple connected
vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small
enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently
among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary
network ensemble provides networks which degree distribution exhibit power-law decay in large interval of
degrees.

PACS. 02.50.Ey Stochastic processes – 89.75.Fb Structures and organization in complex systems – 89.20.Ff
Computer science and technology

1 Introduction

From communication networks like World Wide Web or
phone networks, through nets of social relations, namely
networks of acquaintances or collaborating scientists, to
biological systems where protein networks, neural net-
works or cell metabolisms are considered – all of them
manifests a similar structural organization: small-world
properties (short distances, strong clustering) and the
power-law vertex degree distribution. See, e.g. [1–4], for
review of data analysis and bibliography. Most of these
natural and man-made networks change in time. Although
these networks undergo different restructuring processes,
their crucial statistical properties are time independent.
The networks are self-organized to stationary states. Any
stationary state can be realized by many (usually huge)
number of microscopically different configurations. Evolu-
tion of a stationary state denotes that microscopic changes
performed do not influence the global characteristics.

In the present paper we propose a stochastic micro-
scopic dynamic rule which leads a regular lattice into the
stationary network state. By simulations we show the re-
lation between the details of microscopic rule and the dis-
tribution of the vertex degree in a stationary state. Our
proposition is based the Watts-Strogatz construction of
the small-world network by rewiring edges [5].

Here, we do not consider any dynamics on a network.
However, our studies are motivated by models of large
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spatially extended systems with short-range interactions,
like Ising models, in which a spin is attached to each ver-
tex [7–12]. Such networks can model the magnetic nano-
materials. Electronic components are represented as ver-
tices and the wires are edges [13]. The neural networks
may also be considered as kind of electronic circuits [14,15]
following the idea of ‘save wiring’ as an organizing princi-
ple of the brain [16].

Our research is aimed on giving hints about the mat-
ter in which changes are performed on two levels. The first
level means that the network topology evolves. The second
level denotes that spins located in nodes are adjusted ac-
cording to the new network structure. Preliminary study
of such materials can be found in [17–19]. Stochastically
evolving connections between at average constant number
of vertices can also be viewed as the playground for model-
ing community structures in networks [20] or coauthorship
networks [21].

The studies of the network topology began with the
random graph theory of Erdös and Rényi [22]. The propo-
sition of Watts and Strogatz [5] that followed, called small
world network, captures the features of regular lattice and
random graph. The algorithm may be summarized as fol-
lows: begin with a regular lattice, then rewire an edge
with some probability P . Traditionally, the evolution in
the Watts-Strogatz network is measured by P . Let us di-
vide the process of rewiring of P -part of edges into t sub-
steps such that P = t ∗ p. Hence, we can say that the p-
part of edges is rewired synchronously at each time step.
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If rewiring is stochastic, like in the Watts-Strogatz algo-
rithm, then the resulting network after t steps with p-part
edges rewired each time step is equivalent to a network
obtained after one step with P = t∗p -part edges rewired.
However, if rewiring goes preferentially and information
about modifications introduced is updated once in a time
step then different networks can be observed.

We show, by simulation, that under some conditions
the resulting networks are different from networks ob-
tained in the 1-step evolution with the corresponding P .
In particular, it appears that if rewiring is accompanied
with ‘synchronized’ preference then the self-organization
of the network state occurs. Namely, the stable vertex de-
gree distribution is reached though the evolution of edges
continuous. It is said that the ensemble of graphs emerges
and the evolution walks on graphs belonging to this en-
semble [23].

Moreover, we present arguments that the topological
transition between the graph ensembles takes place. If p
values are small then, so-called, leafy phase emerges. The
phase ensemble consists of graphs formed by multiple in-
ter connected vertices, called graph skeleton, with plenty
of leaves attached to each skeleton vertex. Occurrence of
connections between vertices of similar properties such as,
e.g., similar degrees, is termed assortativity and the high
probability of connections between vertices with different
degrees is termed disassortativity [23]. The strong assorta-
tivity between hubs present in the stationary state results
from preferences in dynamics considered. Moreover, the
vertices of the graph skeleton are surrounded by leaves,
namely each hub belongs to a star-like subgraph. Hence
together with strong assortativity of hubs the strong disas-
sortativity is present also. On the other hand, if p is large
enough then the network stabilizes in, so-called, tangling
phase where edges of a graph circulate frequently among
low degree vertices.

All network ensembles are characterized by the distinct
degree distributions with exponentially vanishing tails.
However, when the parameters driving the network evo-
lution are specially adjusted, then the power-law decay
appears in the rather wide interval of vertex degrees. The
exponent γ for this decay is close to 2 what suggests strong
inhomogeneity in the network.

The algorithm is presented in Section 2. Section 3 con-
tains results obtained by simulations. The discussion and
development of the model is proposed in Section 4.

2 Algorithm

Let us number vertices of the lattice as 1, 2, . . . , N . Then
each edge is characterized by the two numbers (from, to)
representing two vertices linked by this edge. The graph
is represented as the vector of size N of lists of vertices
– neighbors of subsequent vertices. The graph is not con-
sidered as directed, though the algorithm can easily be
adapted to a directed one.

There are two basic parameters in the model: p– prob-
ability to rewire an edge each time step, and T – threshold
in the preference function.

Fig. 1. The preferences in case T = 8. Notice, that pul(1) = 0
and pul(T ) = p always, (color on line).

The synchronized preferential rewiring step means:

1. Choose at random any of N nodes. For the node i
chosen the set of its edges {(i, ji)} is reviewed. The
following decisions are made:
(i) the subset {ji∗} ⊂ {ji} of edges to rewire is selected
with probability pul calculated as follows, see Figure 1:

pul(ji∗) =
0 if deg(ji∗) = 1

min
(
1, pT

deg(ji∗ )

)
if deg(ji∗) > 1

(ii) for each ji∗ selected to rewire the new attachment
is assigned li∗ with probability to link to li∗ -node pl

given by

pl (li∗) = min
(

1,
deg(li∗)

T

)
.

2. The global information on the vertex degrees is up-
dated.

Since there are possible differences in applying Watts-
Strogatz idea of rewiring, below we give the evolution
procedure. The basic procedure, called, EdgeEvolution,
requires three parameters: from, p and T . The illustration
of the networks before (left graph) and after (right graph)
rewiring is shown in Figure 2.
Edge Evolution (from, p, T ):
(a) for each vertex to from the list of edges of the vertex
from do
(b) if deg(to) > 1 then
(c) choose ξ1 ∈ [0, 1] at random and
(d) if ξ1 < pT

deg(to) then accept the vertex to

for unlinking
(e) for each vertex to accepted for unlinking
(f) choose new to ∈ {1, 2, . . . , N} at random but
new to �= from
(g) choose ξ2 ∈ [0, 1] at random and
(h) if ξ2 < deg(new to)

T then accept new to, i.e.,

edge (from, to) := edge (from, new to)
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Fig. 2. An edge linking vertices from and to (left graph) is
rewired to the edge between vertices from and new to (right
graph). (Color on line)

.

(i) otherwise go to (f).
Remarks:

– The algorithm conserves both the number of vertices
and the number of edges. Steps (a)–(d) prepare the
list of edges of the vertex from to be rewired, while
steps (f)–(i) fix new connections. Each edge accepted
for rewiring must be rewired (see the loop(i)).

– The condition (b) is introduced to avoid presence of
zero-degree vertices. Any vertex with a degree equal to
1 cannot be unlinked. Otherwise we face the problem
of dramatically increasing number of isolated nodes.
However, this condition does not protect a graph from
being disconnected.

– A randomly selected new vertex for linking to must
be different from the from vertex to avoid loops in a
graph, line (f), however, multiple edge links are not
forbidden.

– Since information regarding the vertex degree is up-
dated after each time step, hence if the network is
evolving with small p, then the evolution may be seen
as asynchronous.

– If deg(to) = T then the probability to unlink from
the to vertex is equal to p while if deg(to) < T
(deg(to) > T ) then probability to unlink is greater
(smaller, respectively) than p. Therefore, the rewiring
goes with some effective probability peff . The mean
values of peff are shown in Figure 3. One should no-
tice that the number of edges rewired each time step
is time independent.

3 Results

3.1 Reaching stationarity

We test by simulations the algorithm described in the pre-
vious section applied to a square lattice with L = 100 for
different p and with preferences governed by the following
two T values T = 8 and T = 16. It effects that number of
vertices considered is N = 104 and the constant number

Fig. 3. Normalized averages of numbers of rewired edges (with
standard deviation errors) each time step for different p and
T = 8, 16, (color on line).

of edges is 2N . Since each edge is represented double –
on both lists of vertices associated to the edge, the total
number of edges considered in rewiring process is 4N .

If preferences are not switched on then the network
quickly reaches the stationary state with the Poisson de-
gree distribution centered at k = 4 [17]. If the prefer-
ences are switched on then for any p and T in a few time
steps the initial δ degree distribution centered at k = 4
transforms into some other distribution. Our focus is on
the process of graph restructuring. In the series of figures:
Figures 4–6 we present arguments to prove the fact that a
graph evolving at any p reaches a state for which further
edge changes do not influence on the vertex degree distri-
bution. Then we say that the system is self-organized into
the fixed stationary state.

In Figures 4 and 5 typical evolutions of vertex degree
distributions are presented. The horizontal axis describes
vertex degree in log-scale. The vertical axis is for time
steps. To quantify properties of the evolving graph, in Fig-
ure 6 we characterize the state of the self-organization by
the second moment of the distributions. The statistical
physics of graphs says that graphs with a fixed number
of edges compose the canonical ensemble [12,23,24] and
the second moment (or equivalently the sum of degrees
squared of all vertices) can be interpreted as the energy
carried by a graph with fixed number of edges [23,25].

The obtained results show that changes in a graph
evolving with p = 0.0001 are similar to those found for cor-
responding first steps of a graph evolving with p = 0.001.
The passing time cannot be distinguished from the value
of p. Comparing figures with p = 0.001 to figures with
p = 0.01 the similar observation holds. Therefore the first
simulation proved fact is that p ∗ 4N rewirings in each
time step after t time steps is equivalent to the change
made by rewiring p ∗ t ∗ 4N edges in one time step for p
sufficiently low. In particular, the evolution with the pref-
erence threshold T = 8 goes in this asynchronous way for
all p ≤ 0.01 and the stationary state of the asynchronous
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Fig. 4. Self-organization in the graph structure studied by the
distributions of vertex degree in time, case T = 8, log-scale
(color on line). Notice, that the graph evolution presented in
the top figure can be found as the first 50 000 steps of the evo-
lution shown in the middle figure, and the evolution presented
in the middle figure can be seen as the first 50 000 steps of the
bottom figure.

Fig. 5. Self-organization of the graph structure studied by
the distributions of vertex degree in time, case T = 16, log-
scale (color on line). Notice, that the graph evolution presented
in the top figure can be found as the first 100 000 steps of
the evolution presented in the middle figure, and the evolution
presented in the middle figure can be considered as the first
100 000 steps of the bottom figure.
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Fig. 6. Self-organization of the graph structure by second mo-
ment of the vertex degree distributions k2.

evolution is reached within the observed 500 000. If T = 16
then the stabilization of a system needs more time. There-
fore all our observations are of 106 time steps long. Nev-
ertheless to reach the asynchronous dynamics ensemble in
case of p = 0.01 we let the system evolve ten times longer,
so that we can state again that for all p < 0.01 the same
stationary state is observable, see legends to Figure 6.

With increasing p, namely p ≥ 0.2, stationary states
are reached definitely faster for both T values. Here the
‘synchronized’ preferential rewiring dominates in one-step
transition what results that at each p the system consti-
tutes different stationary ensemble. These ensembles are
distinct quantitatively from each other by the different
vertex degree distributions what reflects in the distinct
values of k2.

3.2 Stationary state vertex distribution

In Figures 7, 8, 9 and 10 we show distributions of the
stationary states obtained at different p and for T = 8
and T = 16, respectively.

Fig. 7. The stationary vertex degree distributions in case
T = 8 and at different role of synchronous dynamics: the asyn-
chronous dynamics results (top figure) and stationary distribu-
tions resulting from different synchronous evolution rule. The
two horizontal scales are used to amplify properties. The or-
dinary linear scale (bottom) is to observe exponential depen-
dences and the log scale (black plots) is to show the power-law
degree regions of decay (gray plots). (Color on line).

In Figure 7 the top panel describes the graph ensemble
resulting from asynchronous evolution. The degree distri-
bution is like a two-part function. The first part represents
properties of vertices which are not preferred, i.e., vertices
with its degree smaller than the threshold (k < 8). The
second part of the distribution represents the tail proper-
ties, i.e., probabilities to find vertices with degrees much
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Fig. 8. The stationary vertex degree distribution in case T = 8
and p when the largest interval of vertex degrees is of a power-
law type (upper figure, the gray plot) and the stationary dis-
tribution of a vertex degree in case of the most synchronous
dynamics (bottom figure). The two horizontal scales are used
to amplify properties. The ordinary linear scale (bottom) is
to observe exponential dependences and the log scale (black
plots) is to show the power-law degree regions of decay (gray
plots). (Color on line).

greater than the threshold T = 8, k � T . The tail decays
exponentially with the rate α = 0.016(0.99) (the Pearson
r2-error is added in brackets). Between these two sepa-
rated regions there is a transient region, here the tran-
sient region means 8 ≤ k ≤ 40, which can be described
by the power-law dependence on vertex degree. The ex-
ponent for this decay is γ = 0.43(0.97). Notice, that this
transient region is not visible on the exponential curve.

With rewiring rate p increasing, the exponential tail
decay slows down (at p ∈ (0.3, 0.4), α = 0.0068(0.99) and
this is the minimal value observed by us) and then grows
up to α = 0.017(0.95) at p = 0.7, see the second and
third panels in Figure 7. Together with fast tail decay,
the transient region with power-law characteristics links
to the first part of the distribution what forms the largest
vertex degree interval with power-law type of distribution.

Fig. 9. The stationary vertex degree distributions in case
T = 16 at different role of synchronous dynamics: the asyn-
chronous dynamics results (top figure) and stationary distribu-
tions resulting from different synchronous evolution rule. The
two horizontal scales are used to amplify properties. The or-
dinary linear scale (bottom) is to observe exponential depen-
dences and the log scale (black plots) is to show the power-law
degree regions of decay (gray plots). (Color on line).
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At p = 0.8 we have the exponent of the power-law decay
γ = 1.95(0.97) for 2 ≤ k ≤ 70, see Figure 8 top panel.
However, for k > 70 the decay changes into γ = 6.6(0.96).
Finally, when p ≥ 1 then the transient region vanishes.
The decay corresponding to vertices with k ≤ 8 can be
still approximated by a power-law but then if k > 8 the
fast exponential decay occurs. In particular at p = 1.5 we
have exponential rate decay α = 0.215(0.99) and power
law decay with exponent γ = 0.86(0.96) when k ≤ 8, see
Figure 8 bottom panel.

In case T = 16 the first and tail parts of degree dis-
tribution are isolated from each other for a large interval
of p, see the first and second panels in Figure 9. The no-
ticeable transient region constitutes at p = 0.6 (γ ≈ 0 for
20 ≤ k ≤ 360), see Figure 9 the bottom panel. With grow-
ing p, similarly to the ensembles resulting from evolution
with T = 8, we observe the junction between the first and
transient regions of the distribution, and the largest in-
terval of the power-law decay establishes. Namely, when
p = 0.9 then for 2 ≤ k ≤ 80 γ = 2.22(0.99), see the
top panel in Figure 10. However for vertices with a degree
k > 80 we observe the fast exponential-like decay. Sta-
tionary ensembles arising from the evolution with p ≥ 1
are similar to those described in case T = 8. The first
part, which can be approximated by power-law, spreads
to k = 16. Then the fast exponential decay occurs, see
Figure 10.

3.3 Phase transition

From the vertex degree distribution study it appears that
at fixed T there exist two different self-organized graph en-
sembles corresponding to the small p and large p value. It
is said that if some global statistical property representa-
tive for a graph topology changes then such a phenomenon
is referred to as topological phase transition [23]. As the
most appropriate order parameters to describe this tran-
sition we consider k2 – mean energy in the ensemble, and
kmax – the largest vertex degree which occur with prob-
ability greater than 10−5. Figure 11 show dependences
of both order parameters on peff . For both T values and
both order parameters two regions of peff are observed.
The point of topological phase transition can be localized
as pcrit

eff ∈ (0.2, 0.3)
The two phases in graph topology can be described as

follows:
Leafy phase:
There is a huge component consisting of almost all vertices
and few little 2, 3-vertices graphs. Small number of ver-
tices with extremely high degrees (hubs) serve as centers of
this component. These centers are multiple interconnected
between each other what together establishes a firm long
living graph skeleton. The skeleton is close to the com-
plete graph. Hence the strong assortativity between hubs
is present. Since the vertices of the graph skeleton are sur-
rounded by plenty of leaves then one can find the strong
disassortativity between skeleton vertices and leaves. At
low p about 90% of vertices are leaves and therefore we

Fig. 10. The stationary vertex degree distribution in case T =
16 and p when the largest interval of vertex degrees is of a
power-law type (upper figure, the gray plot) and the stationary
distribution of a vertex degree in case of the most synchronous
dynamics (bottom figure). The two horizontal scales are used
to amplify properties. The ordinary linear scale (bottom) is
to observe exponential dependences and the log scale (black
plots) is to show the power-law degree regions of decay (gray
plots). (Color on line).

call a typical network of the ensemble as leafy-complete
graph and the corresponding phase as leafy phase.
Tangling phase:
At p ≥ 1 the strong expectation can arise that the net-
work ensemble should collapse to a stochastic graph. This
expectation is supported by the fact that when p ≥ 1
then there exists a degree interval, namely T ≤ k ≤ pT
where the probability to unlink and probability to link
to are equal to 1 – like in a stochastic graph. Moreover,
vertices with k > pT are still of high probability to be
unlinked, see Figure 1. The stochastic graph distribution
is distinguished from others by the peaked shape around
the average degree value, here sharp maximum at k = 4
should appear. However, such distribution did not appear
at any model parameters considered by us. The dynamics
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Fig. 11. The second moment of the vertex degree distributions
(with standard deviation errors) and maximal vertex degree
(probability that such a vertex occur on a lattice is greater
than 0.1) in the stationary regime, (color on line).

which persistently applies the preference rule, drives the
system to other than a stochastic graph solution. There is
not a typical vertex for network. Instead vertices k ≤ T
occur with similar probability. One can think that each
time step plenty of edges are moved around between the
similar low degree vertices what blocks the possibility to
establish vertices with higher degrees. Let us call this net-
work ensemble as tangling net to underline activity and
inefficiency of the evolution rule. The corresponding phase
will be called tangling phase.

The process of transition from the leafy to tangling
phase can be explained qualitatively in the following way.
In leafy phase there is a pool of edges attached to ver-
tices of little degree and a small number of vertices with
high degrees which are densely interconnected between
each other. The presence of multiple connections makes
the skeleton connections degenerated what results in that
the effective number of edges in the system is much smaller
than 2N . With growing p the information about changes
in the edge connections are not immediately available to
other rewirings what weakens the assortativity between

hubs. Therefore the graph skeleton obtains less possibil-
ity to emerge and the mechanism analogous to the pref-
erential attachment in growing models of scale free net-
works [26] can occur. “New” edges appear due to vanish-
ing connection degeneracy. Though the appearance of the
graph skeleton is less probable, but centers which accumu-
late edges occur due to the persistently applied dynamics
with preferences.

4 Conclusions and discussion

By considering the network evolution as two-step: the
preferential rewiring of edges and updating of the infor-
mation about changes done we obtain a discrete time net-
work evolution. In this time step scale the evolution drives
a regular lattice to the graph ensemble with fixed statis-
tical properties. The presented simulation foundings can
be summarized as follows:

1. Networks evolving with preferential rewiring rule self-
organize into stationary states.

2. The stationary states form ensembles of exponential-
type networks.

3. The statistical properties of the stationary states such
as vertex degree distribution, its second moment and
maximal vertex degree are related to model parameters
p and T .

4. In the space of stationary states two separated regions
are identified;
– the limit of asynchronous preferential evolution,
called leafy phase, if p ≤ 0.01 and T = 8, 16;
– the limit of synchronous highly rewired preferen-
tial evolution, called tangling phase, if p > 1.0 and
T = 8, 16.
Between these two phases for different model parame-
ters the different final states occur.

5. The maxima of the second moment of vertex degree
distribution and the largest vertex degree are localized
at p ≈ 0.2 for both T . This feature suggests that the
transition point between the two phases observed can
be related to this value.

6. The transition goes by smashing multi-connections be-
tween vertices belonging to the graph skeleton. Since
the wide interval with the power-law decay in the de-
gree distribution is observed we can claim that the
mechanism which is characteristic for Barabasi-Albert
network, namely the growth in the network [26], is
present. But here this mechanism denotes the increase
in the number of effective edges.

The two most important physical mechanisms are usu-
ally listed to explain the occurrence of power-laws [6].
(1) a rich-get-richer mechanism in which the most linked
vertices get more links. Here such mechanism is repre-
sented by the preferential attachment rule and moreover
this mechanism introduces a kind of ordering. (2) criti-
cal phenomena where the ordering mechanism is in con-
flict with some desordering process. Here, a temperature
like mechanism can be related to the synchronization. The
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synchronization weakens the order caused by the prefer-
ential rule. This conflict effects in appearance of critical
properties.

Rough investigations about the graph ensembles arisen
when T = 100 have been done but only for p ≥ 0.1
to limit the length of runs. Again, the limit stationary
degree distributions can be divided into two classes: the
leafy-complete graph (p = 0.1) and the exponential graph
(p = 1.0). However, for any value of p, there was not no-
ticed a power-law dependence in the first part of the dis-
tribution as well as there was not observed any transient
region. Hence, in the phase-space of T parameter another
topological transition can be localized.
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Science and Information Technology Project: PB/1472/PO3/
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